
R
t

G
D

a

A
R
R
A
A

K
B
B

1

a
m
i
c
T
b
t
a
p

a
b
c
S
i
t

z

5
f

0
d

Journal of Power Sources 196 (2011) 2319–2331

Contents lists available at ScienceDirect

Journal of Power Sources

journa l homepage: www.e lsev ier .com/ locate / jpowsour

ecursive approximate weighted total least squares estimation of battery cell
otal capacity

regory L. Plett ∗,1

epartment of Electrical and Computer Engineering, University of Colorado at Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, United States

r t i c l e i n f o

rticle history:
eceived 30 June 2010
eceived in revised form 9 September 2010
ccepted 20 September 2010

a b s t r a c t

Battery cell total capacity refers to the total amount of charge that can be extracted from a fully charged
cell. Knowledge of the present total capacity value is important to being able to calculate the maximum
energy storage capability of a battery pack, the remaining energy in a battery pack, and as an indicator of
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the battery’s state of health. We show that traditional methods of estimating battery cell total capacity,
which consider noises only in the accumulated ampere hour measurement, are biased. Battery cell total
capacity must be estimated with knowledge of both the noises on the state of charge estimates and on the
accumulated ampere hour measurements used to compute the total capacity estimate. We demonstrate
how total least squares gives better results than traditional methods, and derive an approximate weighted
total least squares algorithm that is suitable for implementation in an embedded battery management

system.

. Introduction

The total capacity of a battery cell is a value, usually expressed in
mpere hours (Ah) or milliampere hours (mAh), that indicates the
aximum electrical charge that the battery cell is capable of hold-

ng. New battery cells are manufactured with certain nominal total
apacities, but as the cells age, their capacities generally decrease.
herefore, being able to accurately estimate the total capacity of a
attery cell is important to being able to determine the health of
hat battery cell, the maximum energy that can be stored in that cell,
nd (with the additional knowledge of present state-of-charge), the
resent energy stored in the cell.

The state-of-charge (SOC) of a battery cell is a value between 0%
nd 100% that indicates the relative level of charge presently held
y the battery cell. A state-of-charge of 100% corresponds to a “full”
ell, while a state-of-charge of 0% corresponds to an “empty” cell.
tate-of-charge is sometimes referred to as “residual capacity” and
s not to be confused with the battery cell total capacity. However,

he two are related by the equation

(t2) = z(t1) + 1
Q

∫ t2

t1

�i(�)
3600

d�. (1)
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where z(t2) is the battery cell SOC at time t2, z(t1) is the battery cell
SOC at time t1, Q is the battery cell total capacity in ampere-hours,
i(t) is the battery cell current at time t in amperes, � is a unitless
efficiency factor, which may take on different values depending on
whether the current is positive or negative, and time is measured in
seconds. The factor of 3600 converts seconds to hours. SOC itself is
unitless. Note that in the convention used herein, discharge current
is assumed to have negative sign and charge current is assumed to
have positive sign. Note also that in this work we treat total capacity
as an electrochemical property of the cell that is independent from
both temperature and rate. (We define total capacity precisely in
Section 2.)

Eq. (1) is the mathematical basis for most capacity estimation
methods. We can rearrange its terms to get:∫ t2

t1

�i(�)
3600

d�︸ ︷︷ ︸
y

= Q (z(t2) − z(t1))︸ ︷︷ ︸
x

, (2)

where the obvious linear structure of y = Qx becomes apparent.
Using a regression technique, for example, one may compute esti-
mates of Q. One needs only to find values for “x” and “y”.

The problem with using standard (least squares) linear regres-
sion techniques is that both the integrated current value y and the

difference between state-of-charge values x have sensor noise or
estimation noise associated with them. The least squares linear
regression problem is a solution to the equation (y − �y) = Qx; that
is, there is noise assumed on the measurements y, but not on the
independent variable x. However, Eq. (2) is implicitly of the form

dx.doi.org/10.1016/j.jpowsour.2010.09.048
http://www.sciencedirect.com/science/journal/03787753
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y − �y) = Q(x − �x) since both the integrated current and SOC esti-
ates have noise. That is, because estimates of SOC are generally

mperfect, there will be noise on the x variable, and using standard
east squares linear regression results in an inaccurate and biased
stimate of battery cell total capacity.

The usual approach to counteract this problem is to try to ensure
hat the SOC estimates are as accurate as possible and then use
tandard least squares estimation anyway. For example, [1] puts
onstraints on how the capacity is estimated. It forces the cell cur-
ent to be zero before the test begins (so that the cell is in an
quilibrium state and the first SOC estimate is as accurate as pos-
ible) and similarly forces the cell current to be zero after the test
nds (again, so that the cell is in an equilibrium state and the sec-
nd SOC estimate is accurate). This procedure eliminates to a large
xtent (but not completely) the error in the x variable, and makes
he regression reasonably accurate. A second example is [8], where
attery current is periodically interrupted and a test performed to
stimate the cell resistance so that the ongoing SOC estimates may
e corrected for ohmic voltage losses. Again, the basic idea is to try
o make x as noise-free as possible.

Both of these methods require a very structured and invasive
etting for determining battery cell total capacity. The battery cell
urrent must be controlled by the algorithm. Furthermore, neither
orrectly handles the residual noise in x: while they minimize the
oise, they never totally eliminate it.

In this paper, we propose a method for determining battery cell
otal capacity in a non-invasive setting where the method does not
mpose constraints on the battery cell current, and where noise
n the SOC estimates is correctly accounted for. That is, the algo-
ithm optimally uses the noisy x and y data to compute a total
apacity estimate that is unbiased by the estimation and measure-
ent noises in x and y. This method is based on total least squares
ethods [2,4–7,15,16], rather than on ordinary least squares meth-

ds. Several variations are derived, with the final version able to
etermine an accurate estimated battery cell total capacity in a
omputationally efficient manner, without imposing constraints on
he battery cell current.

It is not the intent of this paper to propose an SOC estima-
ion algorithm. (For a survey of some available methods, see [9].)
ndeed the total capacity estimation techniques proposed herein
re agnostic – to a point – to the SOC estimation technique used to
ive the input SOC estimates that produce x. However, some SOC
stimation methods may not be appropriate because they have a
trong dependence on the total capacity estimate, leading to a cir-
ularity of dependencies. For example, Coulomb counting may not
e used because it must have an accurate estimate of total capacity
o give an accurate estimate of SOC. Using Coulomb counting with
he methods presented herein will give a circular dependence that
ill not converge and will eventually go unstable. SOC estimation
ethods based only on voltage are appropriate although, arguably,

heir accuracy tends to be very poor, especially with cells having a
ery flat open circuit voltage characteristic (e.g., lithium-ion cells
ith an iron phosphate cathode chemistry, “LFP” cells). Our own
reference is to use Kalman filter based methods, and particularly
igma-point Kalman filters (SPKF), which optimally combine volt-
ge and current information and are very insensitive to errors in
he value used for total capacity when making SOC estimates. This
llows us to use the static constant Qnom (the nominal capacity of
he cell) within the SPKF when computing SOC estimates and still
ave accurate results. The SOC estimates produced by SPKF using
he static value Qnom are then used by the methods proposed herein

o produce dynamic estimates Q̂ of total capacity Q, which may
e used for state-of-health determination. Typical SOC estimation
rrors using SPKF are on the order of about 1% for lithium-ion cells
aving manganese oxide cathode chemistries, “LMO” cells [13,14].

n unpublished work, we have also validated SPKF for LFP cells,
ces 196 (2011) 2319–2331

where we find typical errors on the order of 3–5%, and without
requiring reliance on a precise value of Q to do so.

The remainder of this article is organized as follows: Section 2
defines total capacity and some other important quantities. Sec-
tion 3 introduces the weighted least squares and weighted total
least squares methods, as well a method to evaluate the “goodness”
of a total capacity estimation methodology overall, and a method
to evaluate the dynamic uncertainty of the estimates produced
by such a methodology. Section 4 outlines a simplified version
of the weighted total least squares method that can be used in
some scenarios, and is the motivation for the recursive approxi-
mate weighted total least squares method proposed in Section 5.
Simulation results to demonstrate the features and limitations of
the methods are presented in Section 6, and discussed in Section 7.
Finally, Section 8 summarizes the article’s main conclusions.

2. Defining total capacity

We now introduce some definitions in order to carefully define
“total capacity,” with the purpose of differentiating it from other
terms having similar names.

Definition: A cell is fully charged when its open circuit voltage
(OCV) reaches vh(T), a manufacturer specified voltage that may
be a function of temperature T. (For example, typically vh(25 ◦C) =
4.2 V for LMO cells, or vh(25 ◦C) = 3.6 V for LFP cells.) A common
method to bring a cell to a fully charged state is to execute a
constant-current charge profile until the terminal voltage is equal
to vh(T), followed by a constant-voltage profile until the charg-
ing current becomes infinitesimal. We define the state-of-charge
(SOC) of a fully charged cell to be 100%.
Definition: A cell is fully discharged when its OCV reaches vl(T),
a manufacturer specified voltage that may be a function of tem-
perature T. (For example, typically vl(25 ◦C) = 3.0 V for LMO cells,
or vl(25 ◦C) = 2.0 V for LFP cells.) A cell may be fully discharged
by executing a constant-current discharge profile until its termi-
nal voltage is equal to vl(T), followed by a constant-voltage profile
until the discharge current becomes infinitesimal. We define the
SOC of a fully discharged cell to be 0%.
Definition: The total capacityQ of a cell is the quantity of charge
removed from a cell as it is brought from a fully charged state to a
fully discharged state. While the SI unit for charge is Coulombs, it
is more common in practice to use units of ampere hours (Ah) or
milliampere hours (mAh) to measure the total capacity of a battery
cell. The total capacity of a cell is not a fixed quantity: it generally
decays slowly over time as the cell degrades.
Definition: The discharge capacityQ[rate] of a cell is the quantity
of charge removed from a cell as it is discharged at a constant
rate from a fully charged state until its loaded terminal voltage
reaches vl(T). Because the discharge capacity is determined based
on loaded terminal voltage rather than open circuit voltage, it is
strongly dependent on the cell’s internal resistance, which itself is
a function of rate and temperature. Hence, the discharge capacity
of a cell is rate dependent and temperature dependent. Because
of the resistive I × R drop, the discharge capacity is less than the
total capacity unless the discharge rate is infinitesimal. Likewise,
the SOC of the cell is nonzero when the terminal voltage reaches
vl(T) at a non-infinitesimal rate. The discharge capacity of a cell at
a particular rate and temperature is not a fixed quantity: it also
generally decays slowly over time as the cell degrades.

Definition: The nominal capacityQnom of a cell is a manufacturer-
specified quantity that is intended to be representative of the
1C-rate discharge capacity Q1C of a particular manufactured lot
of cells at room temperature, 25 ◦C. The nominal capacity is a con-
stant value. Since the nominal capacity is representative of a lot of
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cells and the discharge capacity is representative of a single indi-
vidual cell, Qnom /= Q1C in general, even at beginning of life. Also,
since Qnom is representative of a discharge capacity and not a total
capacity, Qnom /= Q.

Total capacity is an intrinsic property of a cell’s electrode mate-
ials, the volume of electrode active materials, and the design
lectrode state-of-charge ranges. (Note that an electrode’s state-of-
harge is a distinct quantity from the cell state-of-charge, although
he two are related. The electrode state-of-charge is the value of v
n LivC6 in a graphite anode, the value of w in LiwMn2O4 in an LMO
athode, or the value of w in LiwFePO4 in an LFP cathode, for exam-
le.) Total capacity is equal to the count of vacant positions in the
athode lattice structure when the cell is fully charged that would
e filled with lithium ions when fully discharged. Equivalently, it

s equal to the count of vacancies in the anode lattice structure
hen the cell is fully discharged that would be filled with lithium

ons when fully charged. Changing temperature does not change
his property, nor does changing the rate at which lithium moves
etween the anode and cathode.

The purpose of this paper is to propose an optimal method to
stimate a cell’s total capacity Q. We will assume that � ≈ 1 at all
alues of current and temperature, which is reasonably accurate for
ithium-ion type cells operated according to manufacturer specifi-
ations, where self discharge and side reactions causing SEI layer
rowth and lithium plating (and so forth) can be neglected. If the
ell is operated outside of this range, then � must be specifically
odeled. It is not the intention of this paper to propose a method

o estimate the discharge capacity of a cell at a particular rate,
lthough this can be computed from Q if a cell model is known.

. Weighted least squares and weighted total least squares

.1. Derivation of weighted ordinary least squares

Both ordinary least squares (OLS) and total least squares (TLS),
s applied to battery cell total capacity estimation, seek to find a
onstant Q̂ such that y ≈ Q̂x using N-vectors of measured data x
nd y. The i th element xi in x and yi in y correspond to data col-
ected from a cell over an interval of time, where xi is the estimated
hange in state-of-charge over that interval, and yi is the accumu-
ated ampere hours passing through the cell during that period.
pecifically,

xi = z(t2) − z(t1) for time interval i

yi =
∫ t2

t1

�i(�)
3600

d�.

he vectors x and y must be at least one sample long (N ≥ 1), but
ultiple samples may be used to obtain better total capacity esti-
ates.
The OLS approach assumes that there is no error on the xi, and

odels the data as y = Qx + �y, where �y is a vector of measure-
ent errors, as depicted in Fig. 1(a). (The error bars on the data point

re meant to illustrate the uncertainties, which are proportional to
yi

.) Here, we assume that �y comprises zero-mean Gaussian ran-
om variables, with known variances �2

yi
(which are not necessarily

qual to each other). OLS attempts to find an estimate Q̂ of the true

ell total capacity Q that minimizes the sum of squared errors �yi.

e generalize that approach here slightly to allow for finding a
ˆ that minimizes the sum of weighted squared errors, where the

eighting takes into account the uncertainty of the measurement.
hat is, we desire to find a Q̂ that minimizes the weighted least
(a) (b)

Fig. 1. Fitting a line to data having uncertainties: (a) WLS fitting to data with errors
on yi only and (b) WTLS fitting to data with errors on both xi and yi .

squares (WLS) merit function

�2
WLS =

N∑
i=1

(yi − Yi)
2

�2
yi

=
N∑

i=1

(yi − Q̂xi)
2

�2
yi

. (3)

In this equation, Yi is a point on the line Yi = Q̂xi corresponding to
the measured data pair (xi, yi), where yi is assumed to have noise
but xi has no noise.

There are a number of approaches that may be taken to solve
this problem, but one that will serve our purposes well is to dif-
ferentiate Eq. (3) with respect to Q̂ and solve for Q̂ by setting the
partial derivative to zero.

∂�2
WLS

∂Q̂
= −2

N∑
i=1

xi(yi − Q̂xi)
�y2

i

= 0

Q̂

N∑
i=1

x2
i

�2
yi

=
N∑

i=1

xiyi

�2
yi

Q̂ =

N∑
i=1

(xiyi/�2
yi

)

N∑
i=1

(x2
i /�2

yi
)

.

If we define

c1,n =
n∑

i=1

x2
i

�2
yi

, and c2,n =
n∑

i=1

xiyi

�2
yi

,

then we can write Q̂n = c2,n/c1,n. The two quantities c1,n and c2,n
may be computed recursively to minimize storage requirements
and to even out computational requirements when updating Q̂n

when n gets large

c1,n = c1,n−1 + x2
n

�2
yn

c2,n = c2,n−1 + xnyn

�2
yn

.

The recursive approach requires an initial estimate of c1,0 and c2,0.
One approach is to simply set c1,0 = c2,0 = 0. Alternately, we can rec-
ognize that a cell with nominal capacity Qnom has that capacity
over a state-of-charge range of 1.0. Therefore, we can initialize

with a synthetic zeroth “measurement” where x0 = 1 and y0 = Qnom.
The value for �2

y0
can be set to the manufacturing variance of the

nominal capacity. That is, c1,0 = 1/�2
y0

and c2,0 = Qnom/�2
y0

.
This method may easily be adapted to allow fading memory of

past measurements. We modify the WLS merit function to place
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ore emphasis on recent measurements. We define the fading
emory weighted least squares (FMWLS) merit function as

2
FMWLS =

N∑
i=1

�N−i (yi − Q̂xi)
2

�2
yi

, (4)

here the forgetting factor � is in the range 0 � � ≤ 1. Then, the
olution becomes

ˆ =

N∑
i=1

�N−i(xiyi/�2
yi

)

N∑
i=1

�N−i(x2
i
/�2

yi
)

. (5)

his solution may also easily be computed in a recursive manner.
e keep track of the two running sums c̃1,n =

∑n
i=1�N−ix2

i
/�2

yi
and

˜2,n =
∑n

i=1�N−ixiyi/�2
yi

. Then, Q̂n = c̃2,n/c̃1,n. When an additional
ata point becomes available, we update these quantities via

c̃1,n = �c̃1,n−1 + x2
n

�2
yn

c̃2,n = �c̃2,n−1 + xnyn

�2
yn

.

n summary, the WLS and FMWLS solutions have a number of nice
roperties:

. They give a closed-form solution for Q̂ . No iteration or advanced
algorithms are required–only simple multiplication, addition,
and division.

. The solutions can very easily be computed in a recursive manner.

. Fading memory can easily be added to allow the estimate Q̂ to
place greater emphasis on more recent measurements than on
earlier measurements, allowing adaptation of Q̂ to adjust for true
cell total capacity changes.

.2. Derivation of weighted total least squares

The TLS approach assumes that there is error on both the xi and
i measurements, as depicted in Fig. 1(b), and models the data as
y − �y) = Q(x − �x). (The error bars on the data point are meant
o illustrate the uncertainties in each dimension, which are pro-
ortional to �xi

and �yi
.) We assume that �x comprises zero-mean

aussian random variables, with known variances �2
xi

and that �y
omprises zero-mean Gaussian random variables, with known vari-
nces �2

yi
, where �2

xi
is not necessarily equal to or related to �2

yi
.

LS attempts to find an estimate Q̂ of the true cell total capacity
that minimizes the sum of squared errors �xi plus the sum of

quared errors �yi. We generalize that approach here slightly to
llow for finding a Q̂ that minimizes the sum of weighted squared
rrors, where the weighting takes into account the uncertainty of
he measurement. That is, we desire to find a Q̂ that minimizes the
eighted total least squares (WTLS) merit function

2
WTLS =

N∑
i=1

(xi − Xi)
2

�2
xi

+ (yi − Yi)
2

�2
yi

. (6)

n this equation, Xi and Yi are the points on the line Yi = Q̂Xi corre-

ponding to the noisy measured data pair (xi, yi). Since both xi and yi
ave noise, we must handle this optimization problem differently

rom the way we handled the WLS problem of Eq. (3). We use the
pproach of reference [6], where Lagrange multipliers 	i are used
o augment the merit function with the constraint that Yi = Q̂Xi.
ces 196 (2011) 2319–2331

This yields

�2
WTLS,a =

N∑
i=1

(xi − Xi)
2

�2
xi

+ (yi − Yi)
2

�2
yi

− 	i(Yi − Q̂Xi).

We set the partial derivatives ∂�2
WTLS,a/∂Xi = ∂�2

WTLS,a/∂Yi =
∂�2

WTLS,a/∂	i = 0. This gives intermediate result

Xi =
xi�

2
yi

+ Q̂yi�
2
xi

�2
yi

+ Q̂ 2�2
xi

, and Yi = Q̂Xi.

With this result, we can re-write Eq. (6) in terms of known quanti-
ties as

�2
WTLS =

N∑
i=1

(yi − Q̂xi)
2

Q̂ 2�2
xi

+ �2
yi

. (7)

To find the value of Q̂ that minimizes this merit function, we set
the partial derivative ∂�2

WTLS/∂Q̂ = 0. That is,

∂�2
WTLS

∂Q̂
=

N∑
i=1

2(Q̂xi − yi)(Q̂yi�
2
xi

+ xi�
2
yi

)

(Q̂ 2�2
xi

+ �2
yi

)
2

= 0. (8)

Unfortunately, this solution has none of the nice properties of the
WLS solution. Namely,

1. There is no closed-form solution in the general case; a numer-
ical method must be used instead to find Q̂ . One possibility is
to perform a Newton–Raphson search for Q̂ [15], where several
iterations of the equation

Q̂k = Q̂k−1 − ∂�2
WTLS/∂Q̂

∂2�2
WTLS/∂Q̂ 2

are performed every time the data vectors x and y are updated
with new data. The numerator of this update equation is the
“Jacobian” of the original metric function, and is computed as Eq.
(8). The denominator of this update equation is the “Hessian” of
the original metric function, which can be found to be

∂2�2
WTLS

∂Q̂ 2
= 2

N∑
i=1

�4
yi

x2
i

+ �4
xi

(3Q̂ 2y2
i

− 2Q̂ 3xiyi) − �2
xi

�2
yi

(3Q̂ 2x2
i

− 6Q̂xiyi + y2
i
)

(Q̂ 2�2
xi

+ �2
yi

)
3

.

(9)

The Newton–Raphson search can be initialized with a WLS esti-
mate of Q̂ , and has the property that the number of significant
figures in the solution doubles with each iteration of the update.
In practice, we find that around four iterations produce double-
precision results. Note that the metric function �2

WTLS is convex,
so this iterative method is guaranteed to converge to the global
solution [7].

2. There is no recursive update in the general case. This has storage
implications and computational implications. To use WTLS, the
entire vector x and y must be stored, which implies increasing
storage as the number of measurements increase. Furthermore,
the number of computations grows as N grows. This is not well
suited for an embedded-system application that must run in real
time with limited storage capabilities.

3. There is no fading memory recursive update (because there is no
recursive update). A non-recursive fading memory merit function

may be defined, however, as

�2
FMWTLS =

N∑
i=1

�N−i (yi − Q̂xi)
2

Q̂ 2�2
xi

+ �2
yi

. (10)
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The Jacobian of this merit function is

∂�2
FMWTLS

∂Q̂
= 2

N∑
i=1

�N−i
(Q̂xi − yi)(Q̂yi�

2
xi

+ xi�
2
yi

)

(Q̂ 2�2
xi

+ �2
yi

)
2

. (11)

The Hessian is

∂2�2
FMWTLS

∂Q̂ 2
= 2

N∑
i=1

�N−i
�4

yi
x2

i
+ �4

xi
(3Q̂ 2y2

i
− 2Q̂ 3xiyi) − �2

xi
�2

yi
(3Q̂

(Q̂ 2�2
xi

+ �2
yi

)
3

A Newton–Raphson search may be used with this fading-
memory cost function to find an estimate of Q.

In Section 4, we will address a special case of WTLS that gives a
losed-form solution, with recursive update, and fading memory.
n Section 5, we will give an approximate solution to the general

TLS problem that also has these nice properties. Before we do so,
e first consider two important properties of both the WLS and
TLS solutions.

.3. Evaluating the goodness of the model fit

When the measurement errors �x and �y are uncorrelated and
aussian, the metric functions �2

WLS and �2
WTLS are chi-squared ran-

om variables. �2
WLS is a chi-squared random variable with N − 1

egrees of freedom, because N data points yi were used in its cre-
tion and one degree of freedom is lost when fitting Q̂ . �2

WTLS is
chi-squared random variable with 2N − 1 degrees of freedom,

ecause N data points xi and N additional data points yi are used
n its creation, and one degree of freedom is lost when fitting Q̂ .
nowledge of the distribution and the number of degrees of free-
om can be used to determine, from the optimized values of the
etric functions, whether the model fit is reliable; that is, whether

he linear fit is a good fit to the data, and whether the optimized
alue of Q̂ is a good estimate of the cell total capacity.

The incomplete gamma function P(�2 | 
) is defined as the prob-
bility that the observed chi-square for a correct model should
e less than a value �2 for degree of freedom 
. Its complement,
(�2 | 
) = 1 − P(�2 | 
), is the probability that the observed chi-
quare will exceed the value �2 by chance even for a correct model.1

herefore, to test for goodness of fit of a model, we must evaluate

(�2|
) = 1
�(
/2)

∫ ∞

�2/2

e−t t(
/2−1) dt.

ethods for computing this function are built into many engineer-
ng analysis programs, and c-language code may be found in [15].
f the value obtained for Q(�2 | 
) is small, then either the model is

rong and can be statistically rejected, or the variances �2
xi

or �2
yi

are
oorly known, or the variances are not actually Gaussian. The third
ossibility is fairly common, but also generally benign if we are con-
ent to accept low values of Q(�2 | 
) as representing a valid model
15]. It is not uncommon to accept models with Q(�2 | 
) > 0.001 and
o reject them otherwise. We will see that when the hypothesized

odel is not a good fit to the data, the value of Q(�2 | 
) becomes
xtremely small. However, when the hypothesized model is equal
o the true model generating the data, even when Q̂ is not precisely
qual to Q, the value of Q(�2 | 
) tends to be very close to unity. We

ill use this information later to show that the WLS model is not a

ood approach to total capacity estimation, whereas WTLS is much
etter.

1 Note that the nomenclature Q(�2 | 
) is standard for the (complementary)
ncomplete gamma function, and is not to be confused with the symbol used to
enote true cell total capacity Q, or with the symbol used to denote the estimate of
ell total capacity Q̂ .
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6Q̂xiyi + y2
i
)
. (12)

3.4. Evaluating the confidence limits on the estimated total
capacity Q̂

When computing an estimate of cell total capacity Q̂ , it is also
important to be able to specify the certainty of that estimate.

Specifically, we would like to estimate the variance �2
Q̂

of the total

capacity estimate, with which we can compute confidence intervals
such as three-sigma bounds (Q̂ − 3�Q̂ , Q̂ + 3�Q̂ ) within which the
true value of cell total capacity Q lies, with high certainty.

To derive confidence limits, we must re-cast the least-squares
type optimization problem as a maximum-likelihood optimization
problem. With the assumption that all errors are Gaussian, this
is straightforward. If we form a vector y comprising elements yi,
and a vector x comprising corresponding elements xi and a diag-
onal matrix ˙y having corresponding diagonal elements �2

yi
, then

minimizing �2
WLS is equivalent to maximizing

MLWLS = 1

(2�)N/2|�y|1/2
exp
(

−1
2

(y − Q̂x)
T
�−1

y (y − Q̂x)
)

= 1

(2�)N/2|�y|1/2
exp
(

−1
2

�2
WLS

)
,

which is a maximum likelihood problem. (The constant to the left of
the exponential causes the function to integrate to 1, yielding a valid
probability density function.) Similarly, if we form a vector d con-
catenating y and x, and a vector d̂ concatenating the corresponding
elements Yi and Xi, and a diagonal matrix ˙d having diagonal ele-
ments �2

yi
followed by �2

xi
, then minimizing �2

WTLS is equivalent to
maximizing

MLWTLS = 1

(2�)N |�d|1/2
exp
(

−1
2

(d − d̂)
T
�−1

d (d − d̂)
)

= 1

(2�)N |�d|1/2
exp
(

−1
2

�2
WTLS

)
.

The maximum-likelihood formulation makes it possible to deter-
mine confidence intervals on Q̂ . According to the Cramer–Rao
theorem, the variance of Q̂ (more precisely, the lower bound to
the variance) is given by the negative inverse of the second deriva-
tive of the argument of the exponential function, evaluated at the
Q̂ that minimizes the least-squares cost function or maximizes the
maximum-likelihood cost function [4]. Therefore,

�2
Q̂

≥ 2

(
∂2�2

WLS

∂Q̂ 2

)−1

for WLS

�2
Q̂

≥ 2

(
∂2�2

WTLS

∂Q̂ 2

)−1

for WTLS.

The second partial derivatives of the WTLS and FMWTLS metric
functions were already derived in Eqs. (9) and (12). For WLS and
FMWLS, we have

∂2�2
WLS

∂Q̂ 2
= 2

N∑
i=1

x2
i

�2
yi

and
∂2�2

FMWLS

∂Q̂ 2
= 2

N∑
i=1

�N−i
x2

i

�2
yi

, (13)
which may be computed using the previously defined recursive
parameters as

∂2�2
WLS

∂Q̂ 2
= 2c1,n and

∂2�2
FMWLS

∂Q̂ 2
= 2c̃1,n. (14)
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In summary, this TLS solution shares the nice properties of the
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. Simplified method with proportional confidence on xi
nd yi

The general WTLS solution from Section 3.2 provides excellent
esults but is impractical to implement in an embedded system.
herefore, we search for cases that lead to simpler implementa-
ions. Here, we look at an exact solution when the uncertainties
n the xi and yi data points are proportional to each other for all

, which leads to a simple solution that can easily be implemented
n an embedded system. With insights from this solution we will
ext look at an approximate WTLS solution in Section 5 that also
as nice implementation properties.

If �xi
= k�yi

, then the WTLS merit function of Eq. (6) reduces to
generalization of the standard TLS merit function

2
TLS =

N∑
i=1

(xi − Xi)
2

k2�2
yi

+ (yi − Yi)
2

�2
yi

=
N∑

i=1

(yi − Q̂xi)
2

(Q̂ 2k2 + 1)�2
yi

. (15)

urthermore, the partial derivative of the WTLS merit function of
q. (8) reduces to

∂�2
TLS

∂Q̂
= 2

N∑
i=1

(Q̂xi − yi)(Q̂k2yi + xi)

(Q̂ 2k2 + 1)
2
�2

yi

. (16)

his equation may be solved for an exact solution to Q̂ , without
equiring iteration to do so. We first collect terms

∂�2
TLS

∂Q̂
= 2

N∑
i=1

(Q̂xi − yi)(Q̂k2yi + xi)

(Q̂ 2k2 + 1)
2
�2

yi

= 0

= Q̂ 2
N∑

i=1

k2 xiyi

�2
yi

+ Q̂

N∑
i=1

x2
i

− k2y2
i

�2
yi

+
N∑

i=1

−xiyi

�2
yi

= 0

ˆ =

−
(

N∑
i=1

(x2
i

− k2y2
i
)/(�2

yi
)

)
±

√√√√( N∑
i=1

(x2
i

− k2y2
i
)/(�2

yi
)

)2

+ 4k

2
N∑

i=1

k2(xiyi)/(�2
yi

)

e simplify notation slightly by defining c3,n =
∑N

i=1y2
i
/�2

yi
. Then,

ˆn =
−(c1,n − k2c3,n) ±

√
(c1,n − k2c3,n)2 + 4k2c2

2,n

2k2c2,n
.

hich of the two roots to choose? We can show that this quadratic
quation always has one positive root and one negative root. This
an be proven by forming the Routh array, and performing the
outh test on its values [3]. The Routh array is:

he first column of the Routh array always has exactly one sign
hange, so there is one root of the polynomial in the right-half plane.
he other root, therefore, must be in the left-half plane. By the fun-

amental theorem of algebra, because the coefficients c1,n, c2,n, and
3,n are real, the polynomial roots must either both be real or be
omplex conjugates. The fact that they are in different halves of the
omplex plane shows that they cannot be complex conjugates, and
herefore must both be real. Therefore, we choose the largest root
ces 196 (2011) 2319–2331

N

=1

(xiyi)/(�2
yi

)

)2

. (17)

from the solution of the quadratic equation, which corresponds to
the positive root. Recursive calculation is done via

Q̂n =
−c1,n + k2c3,n +

√
(c1,n − k2c3,n)2 + 4k2c2

2,n

2k2c2,n
, (18)

where initialization is done by setting x0 = 1 and y0 = Qnom. �2
yi

is set
to a representative value of the uncertainty of the total capacity.
Therefore, c3,0 = Q 2

nom/�2
yi

, c2,0 = Qnom/�2
yi

and c1,0 = 1/�2
yi

, and

c1,n = c1,n−1 + x2
n

�2
yi

c2,n = c2,n−1 + xnyn

�2
yi

c3,n = c3,n−1 + y2
n

�2
yi

.

The Hessian, which is required to compute the uncertainty of the
estimate, may also be found in terms of the recursive parameters:

∂2�2
TLS

∂Q̂ 2
= (−4k4c2)Q̂ 3 + 6k4c3Q̂ 2 + (−6c1 + 12c2)k2Q̂ + 2(c1 − k2c3)

(Q̂ 2k2 + 1)
3

.

This can be used to predict error bounds on the estimate Q̂ . One-

sigma bounds are computed as
√

2/(∂2�2
TLS/∂Q̂ 2).

Fading memory may be easily incorporated. Recursive calcula-
tion is done via

Q̂n =
−c̃1,n + k2c̃3,n +

√
(c̃1,n − k2c̃3,n)2 + 4k2c̃2

2,n

2k2c̃2,n
, (19)

where initialization is done by setting x0 = 1 and y0 = Qnom. �2
yi

is set
to a representative value of the uncertainty of the total capacity.
Therefore, c̃3,0 = Q 2

nom/�2
yi

, c̃2,0 = Qnom/�2
yi

and c̃1,0 = 1/�2
yi

, and

c̃1,n = �c̃1,n−1 + x2
n

�2
yi

c̃2,n = �c̃2,n−1 + xnyn

�2
yi

c̃3,n = �c̃3,n−1 + y2
n

�2
yi

.

After some straightforward manipulations, we can obtain the Hes-
sian in terms of the recursive parameters c̃1 through c̃3:

∂2�2
FMTLS

∂Q̂ 2

= (−4k4c̃2)Q̂ 3 + 6k4c̃3Q̂ 2 + (−6c̃1 + 12c̃2)k2Q̂ + 2(c̃1 − k2c̃3)

(Q̂ 2k2 + 1)
3

.

WLS solution:

1. It gives a closed-form solution for Q̂ . No iteration or advanced
algorithms are required—only simple multiplication, addition,
and division.
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ig. 2. Geometry of WTLS: (a) mapping between (xi , yi) and (Xi , Yi) for WTLS with
qual confidence on xi and yi; and (c) definitions for derivation of approximate WT

. The solution can be very easily computed in a recursive manner.
We keep track of the three running sums c1,n, c2,n and c3,n. When
an additional data point becomes available, we update the sums
and compute an updated total capacity estimate.

. Fading memory is easily added.

Unfortunately, this solution does not allow �2
xi

and �2
yi

to be
rbitrary—they must be proportionally related by the scaling factor
xi

= k�yi
. The next section describes an approximation to TLS that

llows an arbitrary relationship.

. Approximate full solution with recursive formulation

We desire an approximate solution to the WTLS problem that
llows �2

xi
and �2

yi
to be non-proportional, but which yields a recur-

ive solution for feasible implementation in an embedded system.
ig. 2 shows the geometry of WTLS and motivates the approximate
olution to be developed in this section.

Fig. 2(a) shows the relationship between data point (xi, yi) and
ts optimized map (Xi, Yi) on the line Yi = Q̂Xi when �2

xi
and �2

yi
are

rbitrary. (The error bars on the data point are meant to illustrate
he uncertainties in each dimension, which are proportional to �xi

nd �yi
.) We see that the distance between xi and Xi is not neces-

arily equal to the distance between yi and Yi. Indeed, if we know
hat the quality of the xi measurement is better (poorer) than the
uality of the yi measurement, the distance to its map Xi on the line
hould be shorter (greater) than the distance from yi to its map Yi
n the line.

Fig. 2(b) shows the relationship between data point (xi, yi) and
ts optimized map (Xi, Yi) on the line Yi = Q̂Xi when �2

xi
and �2

yi
are

qual. In this case, the distance between xi and Xi is equal to the
istance between yi and Yi, and the line joining data point (xi, yi)
nd (Xi, Yi) is perpendicular to the line Yi = Q̂Xi. (If �xi

and �yi
are

ot equal but proportional, the x- or y-axis may be scaled to yield
ransformed data points with equal variances, and hence the same
dea applies.)

Fig. 2(c) illustrates the definitions that will be used to derive
n approximate weighted total least squares (AWTLS) solution. As
ith the TLS solution, we enforce that the line joining data point

xi, yi) and (Xi, Yi) be perpendicular to the line Yi = Q̂Xi. This will
esult in a solution that may be solved recursively. However, as
ith the WTLS solution, we weight the distance between xi and Xi
ifferently from the distance between yi and Yi in the optimization

erit function. This will give a better total capacity estimate than

LS when the uncertainties on xi and yi are not proportional.
We define �xi be the x-distance between data point i and the

ine, and �yi be the y-distance between data point i and the line.
he slope of the line is Q̂ = �yi/�xi for all i. The angle of the line
(c)

al confidence on xi and yi; (b) mapping between (xi , yi) and (Xi , Yi) for WTLS with

is 
 = tan−1 Q̂ . The shortest distance between the line and a given

data point is Ri = �yi cos 
 = �yi/
√

1 + tan2 
 = �yi/
√

1 + Q̂ 2.
Let ıxi = Risin 
 and ıyi = Ricos 
. These are the x- and y-

components of the perpendicular distance between data point i and
the fitting line. We then weigh our fitting merit function according
to these variances. Therefore, we define the approximate weighted
total least squares (AWTLS) merit function as

�2
AWTLS =

N∑
i=1

ıx2
i

�2
xi

+ ıy2
i

�2
yi

.

Note that sin2 
 = 1 − cos2 
 = Q̂ 2/(1 + Q̂ 2). Therefore,

ıx2
i

=
(

�y2
i

1 + Q̂ 2

)(
Q̂ 2

1 + Q̂ 2

)
ıy2

i
=
(

�y2
i

1 + Q̂ 2

)(
1

1 + Q̂ 2

)
.

Therefore, since �yi = yi − Q̂xi,

�2
AWTLS =

N∑
i=1

(yi − Q̂xi)
2

(1 + Q̂ 2)
2

(
Q̂ 2

�2
xi

+ 1

�2
yi

)
. (20)

To verify that AWTLS is an approximation to WTLS in at least some
cases, we note that the two merit functions are equal when �xi

=
�yi

However, they are not equal when �xi
= k�yi

, but this will be
corrected at the end of this section.

The Jacobian of the AWTLS merit function is

∂�2
AWTLS

∂Q̂
= 2

(Q̂ 2 + 1)
3

N∑
i=1

Q̂ 4

(
xiyi

�2
xi

)
+ Q̂ 3

(
2x2

i

�2
xi

− x2
i

�2
yi

− y2
i

�2
xi

)

+ Q̂ 2

(
3xiyi

�2
yi

− 3xiyi

�2
xi

)
+ Q̂

(
x2

i
− 2y2

i

�2
yi

+ y2
i

�2
xi

)

+
(

−xiyi

�2
yi

)
. (21)

This can be re-written in terms of recursively computed running
summations

∂�2
AWTLS

∂Q̂
= 2

ˆ 2 3

(
c5Q̂ 4 + (2c4 − c1 − c6)Q̂ 3
(Q + 1)

+ (3c2 − 3c5)Q̂ 2 + (c1 − 2c3 + c6)Q̂ − c2
)

.

where initialization is done by setting x0 = 1 and y0 = Qnom. �2
y0

is
set to a representative value of the uncertainty of the total capacity
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chosen to give an “order of magnitude” proportionality or average
proportionality between the uncertainties of xi and yi.

In summary, these AWTLS solutions share the nice properties of
the WLS solution:
326 G.L. Plett / Journal of Powe

nd �2
x0

is set to a representative value of the uncertainty of a dif-
erence between two SOC estimates. Therefore, c1,0 = 1/�2

y0
, c2,0 =

nom/�2
y0

, c3,0 = Q 2
nom/�2

y0
, c4,0 = 1/�2

x0
, c5,0 = Qnom/�2

x0
, c6,0 =

2
nom/�2

x0
, and

c1,n = c1,n−1 + x2
n

�2
yn

c2,n = c2,n−1 + xnyn

�2
yn

c3,n = c3,n−1 + y2
n

�2
yn

c4,n = c4,n−1 + x2
n

�2
xn

c5,n = c5,n−1 + xnyn

�2
xn

c6,n = c6,n−1 + y2
n

�2
xn

.

he roots of this quartic equation

5Q̂ 4 + (2c4 − c1 − c6)Q̂ 3 + (3c2 − 3c5)Q̂ 2

+ (c1 − 2c3 + c6)Q̂ − c2 = 0

re candidate solutions for Q̂ . They may be found using the Fer-
ari method, a closed-form solution that does not require iterative
r eigenvalue analysis, so may be implemented readily in an
mbedded system [17]. However, of the four roots only one is the
ptimum, and we do not know any method to decide a priori which
oot to solve for. Indeed, in our experience, with some sets of data
ll roots are real, but with other sets of data some can be complex,
nd some can be negative. The only foolproof method we know
o determine which root is the solution that minimizes �2

AWTLS is
o evaluate the merit function �2

AWTLS at each of the four candidate
olutions, and to retain the one that gives the lowest value. (This can
e skipped for negative and complex roots, which are not possible
olutions for battery cell capacity.) Computing the merit function
ay be very readily done if we rewrite it in terms of the running

ummations

2
AWTLS = 1

(Q̂ 2 + 1)
2

(
c4Q̂ 4 − 2c5Q̂ 3 + (c1 + c6)Q̂ 2 − 2c2Q̂ + c3

)
.

hen the assumptions made in deriving AWTLS are approximately
rue, the Hessian yields a good value for the error bounds on
he total capacity estimate. After some straightforward but messy

athematics, we can find the Hessian to be

∂2�2
AWTLS

∂Q̂ 2
= 2

(Q̂ 2 + 1)
4

(−2c5Q̂ 5 + (3c1 − 6c4 + 3c6)Q̂ 4

+ (−12c2 + 16c5)Q̂ 3 + (−8c1 + 10c3 + 6c4 − 8c6)Q̂ 2

+(12c2 − 6c5)Q̂ + (c1 − 2c3 + c6)). (22)

Fading memory can be easily incorporated. The cost function is

2
FMAWTLS =

N∑
i=1

�N−i (yi − Q̂xi)
2

(1 + Q̂ 2)
2

(
Q̂ 2

�2
xi

+ 1

�2
yi

)
. (23)
he Jacobian is

∂�2
AWTLS

∂Q̂
= 2

(Q̂ 2 + 1)
3

N∑
i=1

�N−i

[
Q̂ 4

(
xiyi

�2
xi

)
+ Q̂ 3

(
2x2

i

�2
xi

− x2
i

�2
yi

− y2
i

�2
xi

)
+

ces 196 (2011) 2319–2331

This can be re-written in terms of recursively computed running
summations

∂�2
FMAWTLS

∂Q̂
= 2

(Q̂ 2 + 1)
3

(
c̃5Q̂ 4 + (−c̃1 + 2c̃4 − c̃6)Q̂ 3

+(3c̃2 − 3c̃5)Q̂ 2 + (c̃1 − 2c̃3 + c̃6)Q̂ − c̃2
)

.

where initialization is done by setting x0 = 1 and y0 = Qnom. �2
y0

is
set to a representative value of the uncertainty of the total capacity
and �2

x0
is set to a representative value of the uncertainty of a dif-

ference between two SOC estimates. Therefore, c̃1,0 = 1/�2
y0

, c̃2,0 =
Qnom/�2

y0
, c̃3,0 = Q 2

nom/�2
y0

, c̃4,0 = 1/�2
x0

, c̃5,0 = Qnom/�2
x0

, c̃6,0 =
Q 2

nom/�2
x0

, and

c̃1,n = �c̃1,n−1 + x2
n

�2
yn

c̃2,n = �c̃2,n−1 + xnyn

�2
yn

c̃3,n = �c̃3,n−1 + y2
n

�2
yn

c̃4,n = �c̃4,n−1 + x2
n

�2
xn

c̃5,n = �c̃5,n−1 + xnyn

�2
xn

c̃6,n = �c̃6,n−1 + y2
n

�2
xn

.

Again, this quartic equation may be solved using the Ferrari
method, for example. The four candidate solutions must be checked
against the merit function to determine which one is optimal. The
merit function in terms of these variables is

�2
FMAWTLS = 1

(Q̂ 2 + 1)
2

(
c̃4Q̂ 4 − 2c̃5Q̂ 3 + (c̃1 + c̃6)Q̂ 2 − 2c̃2Q̂ + c̃3

)
.

The Hessian is

∂2�2
FMAWTLS

∂Q̂ 2
= 2

(Q̂ 2 + 1)
4

(−2c̃5Q̂ 5 + (3c̃1 − 6c̃4 + 3c̃6)Q̂ 4

+ (−12c̃2 + 16c̃5)Q̂ 3 + (−8c̃1 + 10c̃3 + 6c̃4 − 8c̃6)Q̂ 2

+ (12c̃2 − 6c̃5)Q̂ + (c̃1 − 2c̃3 + c̃6)). (25)

Note that the AWTLS merit function in Eq. (20) does not equal
the WTLS merit function in Eq. (7) when �yi

= k�xi
. This can be

easily remedied. Define ỹi = kyi. Then �ỹi
= �xi

. Invoke the AWTLS

or FMAWTLS methods to find total capacity estimate Q̂ and Hes-
sian H using input sequences comprised of the original x vector
and the scaled ỹ vector (i.e., (xi, ỹi) with corresponding variances
(�2

xi
, k2�2

yi
)). The true slope estimate can be found as Q̂corrected =

Q̂/k and the corrected Hessian can be found as Hcorrected = H/k2. This
is the method used in the results section, where the proportion-
ality constant is estimated as k = �x1 /�y1 . This scaling improves
results even when � and � are not proportionally related, if k is
Q̂ 2

(
3xiyi

�2
yi

− 3xiyi

�2
xi

)
+ Q̂

(
x2

i
− 2y2

i

�2
yi

+ y2
i

�2
xi

)
+
(

−xiyi

�2
yi

)]
.(24)
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Fig. 3. Results from hybrid electric v

. They give a closed-form solution for Q̂ . No iteration or advanced
algorithms are required—only simple multiplication, addition,
and division.

. The solution can be very easily computed in a recursive manner.
We keep track of the six running sums c1,n through c6,n. When
an additional data point becomes available, we update the sums
and compute an updated total capacity estimate.

. Fading memory can easily be added to allow the estimate Q̂ to
place greater emphasis on more recent measurements than on
earlier measurements, allowing adaptation of Q̂ to adjust for true
cell total capacity changes.

. Furthermore, this method is superior to the TLS solution since it
allows individual weighting on the xi and yi data points.

. Simulations to test the methods

This section presents a number of usage scenarios to exercise
he four different total capacity estimation methods and compare
heir performance. All scenarios use the fading-memory version of
he four methods, but we omit the prefix “FM” for brevity. Unless
therwise mentioned, the fading memory forgetting factor � = 1.0.

We assume that the individual SOC estimates that are input to
hese methods can be determined to an accuracy of �z = 0.01. This is
eing very generous, since the best method we are aware of, SPKF,
chieves only around �z = 0.01 for LMO cells and �z = 0.03 for LFP
ells in practice, when Qnom is used instead of Q in the estimator.
ther methods we have used, such as extended Kalman filtering
r EKF [10–12], achieve around �z = 0.02 or higher for LMO cells in
ractice. (A nice advantage of both EKF and SPKF is that they give
ynamic estimates of �z that ensure that the values of �xi

used in
otal capacity estimation are accurate.) However, despite limita-
ions in present SOC estimation, we are confident that with better
ell modeling, these methods can be improved in the future.

We use computer simulation rather than cell testing to validate
he algorithms because it allows us to constrain a variety of factors
hat would be difficult to control in a real-time embedded sys-
em. These include: the efficacy and accuracy of the SOC estimation
lgorithms used to provide input to the total capacity estimation
lgorithms; the accuracy and precision of the raw sensor mea-
urements used as input (including the challenges of bias errors,
onlinear errors, and random errors, for example); the repeatabil-
ty of the experiment; and the fact that total capacity of a physical
ell fades over time and the associated difficulty/impossibility of
nowing the “true” value of total capacity with which to compare
ur results. Therefore, we choose to use synthetic data to isolate
he performance of the total capacity estimation algorithms them-
0 100 200 300 400 500 600 700 800 900 1000
Algorithm update index

e application simulation scenario 1.

selves, when all other factors are in some sense idealized. The xi and
yi values are mathematically generated, as described in the individ-
ual subsections below. We are currently collecting long-term life
test data from both LMO and LFP cells, which we intend to use in
future publications to evaluate the effectiveness of these and other
algorithms over the lifetime of a cell.

6.1. Hybrid electric vehicle application, scenario 1

The first sets of simulations that we present are for hybrid
electric vehicle scenarios. From the perspective of total capacity
estimation, these applications are characterized by the narrow win-
dow of SOC used. We assume that the vehicle uses a SOC range of
40–60%. Therefore, each time the total capacity estimate is updated,
the true change in SOC can range from −0.2 to +0.2. We simulate
this by choosing the true value of xi to be a uniform random number
selected between these limits.

The HEV application is also characterized by the fact that the bat-
tery pack is never fully charged to a precisely known SOC; therefore,
each time the total capacity estimate is updated, two estimates of
SOC are required to compute x = z(t2) − z(t1). This gives an overall
�2

x = 2�2
z = 2(0.01)2. We simulate this by computing the “mea-

sured” value of xi to be equal to the true value of xi added to a
zero-mean Gaussian random number having variance �2

x .
We compute the true value of yi to be equal to the nomi-

nal capacity of the cell Qnom multiplied by the true value of xi.
Noise on the yi measurement is assumed to comprise accumu-
lated quantization noises (for other noise factors, see section 7).
For yi computed by summing mi measurements, taken at a 1 Hz
rate, from a sensor having quantizer resolution q, the total noise
is �2

yi
= q2mi/(12 × 36002). For HEV scenario 1, we assumed that

the maximum range of the current sensor is ±30Qnom and that a
10 bit A2D is used to measure current. This leads to q = 60/1024.
We chose mi = 300 s for every measurement and a nominal capacity
of Qnom = 10 Ah. The recursive estimates were not initialized prior
to the first data point being received (equivalently, the recursive
parameters were initialized to zero).

Results from this scenario are presented in Fig. 3. The left frame
shows estimates made using the four methods evolving over time
as thick lines, and their three-sigma error bounds, computed using
the Hessian method, as thin lines. We see that WTLS, TLS, and

AWTLS give identical estimates and error bounds under this sce-
nario, and converge to the neighborhood of the true total capacity.
The WLS estimate is biased, and the error bounds are (incorrectly)
so tight that they are indistinguishable from the estimate itself.
The right frame shows the goodness of fit metric as applied to the
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Fig. 4. Results from hybrid electric

our methods. Again, WTLS, TLS, and AWTLS give identical results,
uickly converging to a value of 1.0 (i.e., the methods are confident
hat their estimate is reliable). The WLS method returns a vanish-
ngly small value for goodness of fit, reflecting the fact that the

ethod does not give a good value for its total capacity estimate
nd/or bounds.

.2. Hybrid electric vehicle application, scenario 2

The second HEV scenario is identical to the first, except that
he recursive methods are initialized with a total capacity estimate
efore further measurements are received. In this case, the methods
ere initialized with a “nominal” capacity estimate of 9.9 Ah (the

rue total capacity was still 10.0). Results are presented in Fig. 4.
n this scenario, TLS and AWTLS give identical results for both their
stimates, error bounds, and goodness of fit. WTLS cannot be calcu-
ated recursively, so the estimation cannot be initialized—its results
re the same as for scenario 1. Once again, WLS is inferior to the
ther methods. TLS and AWTLS give the best results because of
ighter error bounds while maintaining a high value for goodness
f fit.
.3. Hybrid electric vehicle application, scenario 3

In the third HEV scenario, we explore the ability of the algo-
ithms to track a moving value of total capacity. This scenario is
dentical to HEV scenario 2, except that the true total capacity is
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Fig. 5. Results from hybrid electric vehicl
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e application simulation scenario 2.

changing with a slope of −0.001 Ah per measurement update, and
a fading memory forgetting factor of � = 0.99 is used for all meth-
ods. Results are presented in Fig. 5, where the true total capacity
is drawn as a dotted black line. In this example, the WLS method
appears to give good results, but its goodness of fit value is still
vanishingly small because the error bounds are unreasonably tight,
and almost never surround the true value of total capacity. WTLS,
TLS, and AWTLS are also able to track the moving value of total
capacity—TLS and AWTLS give the best results due to the ability
to initialize with a reasonable initial value, yielding narrower error
bounds.

6.4. Battery electric vehicle application, scenario 1

The next scenarios that we consider are typical of battery electric
vehicle and plug-in hybrid electric vehicle operation. These are dif-
ferent from HEV application in several respects: the battery total
capacity is larger, the relative rate of energy usage is lower, the
range of SOC used by the vehicle is larger, and the BEV battery pack
is sometimes fully charged to a known set point. In all cases, we
consider a battery pack with total capacity of Qnom = 100 Ah, and a
maximum rate of ±5Qnom. We again assume a 10-bit current sensor,

which gives q = 10/1024 and �2

yi
= q2mi/(12 × 36002).

For the first BEV scenario we assume that the total capacity esti-
mate is updated on a regular basis as the vehicle operates, with
mi = 7200 s. We assume that the battery SOC can change by ±40% in
that interval, so the true value of xi is chosen to be a uniform ran-
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Fig. 6. Results from battery electric

om variable between −0.4 and +0.4. Again, noise on xi is Gaussian
ith variance �2

xi
= 2(0.01)2. The recursive methods are initialized

ith an initial total capacity estimate of 99 Ah.
Representative results of this scenario are presented in Fig. 6.

hese are very similar in most respects to the HEV scenario 2 results.
gain, WLS fails because its error bounds are far too tight, leading

o a vanishingly small goodness of fit. WTLS, TLS, and AWTLS all
ive good results, with TLS and AWTLS giving the best results due
o lower error bounds because of the possibility of initialization.

.5. Battery electric vehicle application, scenario 2

The asymptotic quality of the total capacity estimates is lim-
ted by the noise on the SOC estimation error. If this noise can
e reduced, the total capacity estimates can become much more
ccurate. The BEV application allows a means to do this: whenever
he battery pack is fully charged, we have a precisely known end-
oint SOC. Therefore, either z(t1) or z(t2) can be known “exactly”
or every total capacity estimate update. This then allows us to use
2
xi

= �2
z = (0.01)2.

The tradeoff is that we no longer have regular updates. Updates

appen randomly, whenever the vehicle is charged. Therefore, mi
ecomes a random variable. For this work, we treat mi as a log-
ormal random variable with mode 0.5 h and standard deviation
.6 h. This gives the probability density function of drive cycle dura-
ions that is shown in Fig. 7. (Other PDFs could easily be used:
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Fig. 7. PDF of drive cycle durations for EV scenarios 2 and 3.

this one was chosen to give reasonable duration drive cycles that
encompassed a variety of driving behaviors and distances.) Also,

since a greater fraction of the battery pack would be used for an
entire drive cycle than for a regular periodic update, we use an 80%
range of SOC, so the true value of xi is computed to be a uniform
random number from −0.8 to +0.8.
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Fig. 9. Results from battery electric

Results from this scenario are presented in Fig. 8. WLS fails once
gain, but this time TLS also fails. TLS fails because �xi

/= k�yi
due

o the variable-length drive cycles. The estimate given by TLS is
ctually quite reasonable, but the goodness of fit is very small. WTLS
ives good results, and AWTLS gives the best results due to lower
rror bounds because of the ability to initialize the estimate.

Note that the asymptotic three-sigma error bounds drop from
bout ±1% to about ±0.15% of the total capacity due to having a
ower value of �xi

and also due to the wider range in xi.

.6. Battery electric vehicle application, scenario 3

The final scenario we consider is identical to BEV scenario 2,
xcept that we simulate a changing total capacity. The slope of
he total capacity curve is chosen to be −0.01 Ah per measure-

ent update, and � = 0.98 was used. Representative results of this
cenario are presented in Fig. 9. Once again, WLS fails and TLS is
ncertain of its estimate for nearly 100 updates. However, TLS does
ecover and do quite well. The AWTLS method gives the best results.

. Discussion

The simulation results have illustrated a few key properties of
he four methods we have discussed to estimate total capacity:

Noise on the SOC estimates must be considered in order to prop-
erly estimate battery total capacity. Least squares, weighted least
squares, and other similar methods simply fail. They give biased
estimates of total capacity, with unreliable error bounds. Methods
related to total least squares, where noises on the SOC estimates
are explicitly recognized and incorporated in the calculations, are
required for reliable total capacity estimation.
WTLS, in principle always gives the best results. However, we
have seen that in practice that the TLS and AWTLS methods can
give better results because they can be initialized with a nominal
capacity estimate. Furthermore, since TLS and AWTLS give nice
recursive solutions, one of them should always be used instead
of WTLS.
If the measurement update interval mi is constant, and therefore
�xi

= k�yi
for all measurements, TLS and AWTLS give identical

results. Therefore, the simpler TLS method is preferred. However,

if �xi

/= k�yi
, the AWTLS method gives better results than TLS, and

sometimes TLS fails. This is particularly important for the BEV
application where total capacity estimate updates are done when
charging the battery, to yield a greatly improved total capacity
estimate because of the reduction in �xi

due to knowing one SOC
0 100 200 300 400 500 600 700 800 900 1000
Algorithm update index

e application simulation scenario 3.

value exactly. AWTLS always gives results at least as good as the
other methods.

• The noises that contribute to �yi
are assumed to be due to cur-

rent sensor errors. In practice, these can include gain errors, bias
errors, noise errors, and nonlinear errors. We have considered
only the noise errors here. Gain errors and nonlinear errors will
bias all of the methods; however, we believe that the biased value
of the total capacity estimate will be consistent with the per-
ceived capacity of the battery pack if the same current sensor is
used to compute the battery pack total capacity estimate and to
monitor pack operations. Bias error can be subtracted in a BEV set-
ting if we can assume that the Coulombic efficiency of the cells is
� ≈ 1 by matching the discharged ampere hours from usage with
the charged ampere hours.

• The output error bounds on the total capacity estimate, even with
the optimum WTLS estimator, are larger than some might expect.
This underscores the need for a method that predicts not only the
estimate, but also dynamic error bounds on the estimate, as do
the ones proposed in this article. Without dynamic error bounds,
the user of the total capacity estimate has no idea how good or bad
that estimate is. If the estimate is used to compute battery pack
available energy, for example, the energy estimate may be overly
optimistic or overly pessimistic, neither of which is acceptable.

8. Conclusions

In this paper, we have investigated several methods to estimate
battery cell total capacity. We have shown that standard meth-
ods, which consider noises on only the accumulated ampere hours
and not on the SOC estimates, are biased and give incorrect error
bounds on their estimates. Weighted total least squares considers
noise on both the accumulated ampere hours and on the SOC esti-
mates used to estimate total capacity, and hence the total capacity
estimates are far more robust. Weighted total least squares, how-
ever, does not allow a recursive solution, so is inappropriate for an
embedded systems implementation. Standard total least squares
can be implemented recursively, and under some scenarios, such as
the HEV application, gives results that are as accurate as weighted
total least squares. However, when the noises on the accumulated
ampere hours and on the SOC estimates are not proportional, total
least squares fails. To address this shortcoming, we have introduced

an approximate weighted total least squares method that is recur-
sive, and gives results that are indistinguishable from those from
weighted total least squares in all settings and are at least as good
as all methods considered. Furthermore, estimate error bounds and
a goodness-of-fit metric may be readily computed.
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